
7

The Sweep Line Paradigm
Computational Geometry – Recitation 2

Agenda

• Toy examples

• Line segment intersection

• Applications
• Area of union of rectangles
• Minimal distance pair

Sweeping: Example #1

Sweeping: Example #1

• Given a set of 1D segments, what is the union of them all?

• Solution: Sort all the points, and count the number of ‘active’ segments.

Sweeping: Example #1
• We have traversed a discrete set of Events, in a certain Order, while

maintaining some Status of the algorithm.
• Events [What data was processed]: start of segment, end of segment.
• Order [In what order we traverse the events]: From left to right
• Status [Additional information maintained]: number of active segments.
• Complexity: 𝑂(𝑛 log 𝑛)

Sweeping: Example #2

Sweeping: Example #2

• An archer is surrounded by a set of barricades.
What are his lines of sight?
• Order: Scan the segments by angle.
• Status: Number of ‘active’ barricades.
• Init in 𝑂 𝑛 .

• Events:
• Start of a segment: increase number of barricades.
• End of a segment: decrease number of barricades.

• Report angles with 0 barricades.

Sweeping: Example #2

• An archer is surrounded by a set of barricades.
What are his lines of sight?
• Order: Scan the segments by angle.
• Status: Number of ‘active’ barricades.
• Init in 𝑂 𝑛 .

• Events:
• Start of a segment: increase number of barricades.
• End of a segment: decrease number of barricades.

• Report angles with 0 barricades.

Barricade
counter: 2

Sweeping: Example #2

• An archer is surrounded by a set of barricades.
What are his lines of sight?
• Order: Scan the segments by angle.
• Status: Number of ‘active’ barricades.
• Init in 𝑂 𝑛 .

• Events:
• Start of a segment: increase number of barricades.
• End of a segment: decrease number of barricades.

• Report angles with 0 barricades.

Barricade
counter: 1

Sweeping: Example #2

• An archer is surrounded by a set of barricades.
What are his lines of sight?
• Order: Scan the segments by angle.
• Status: Number of ‘active’ barricades.
• Init in 𝑂 𝑛 .

• Events:
• Start of a segment: increase number of barricades.
• End of a segment: decrease number of barricades.

• Report angles with 0 barricades.

Barricade
counter: 0

Sweeping: Example #2

• An archer is surrounded by a set of barricades.
What are his lines of sight?
• Order: Scan the segments by angle.
• Status: Number of ‘active’ barricades.
• Init in 𝑂 𝑛 .

• Events:
• Start of a segment: increase number of barricades.
• End of a segment: decrease number of barricades.

• Report angles with 0 barricades.

Barricade
counter: 1

Sweeping: Example #2

• An archer is surrounded by a set of barricades.
What are his lines of sight?
• Order: Scan the segments by angle.
• Status: Number of ‘active’ barricades.
• Init in 𝑂 𝑛 .

• Events:
• Start of a segment: increase number of barricades.
• End of a segment: decrease number of barricades.

• Report angles with 0 barricades.
• Complexity: 𝑂(𝑛 log 𝑛)

Barricade
counter: 2

Sweeping: Example #3

Sweeping: Example #3

• An archer is surrounded by a set of barricades.
Which barricades are visible to him?
• Order: Scan the segments by angle.
• Status: Set of active barricades, sorted by the

distance from the archer.
• Events:
• Start of a segment: Add segment to the status DS.
• End of a segment: Remove segment from the

status DS.
• Report all segments which was closest at some

point.
• Complexity: 𝑂(𝑛 log 𝑛)

Segment Intersection

Segment Intersection

• Given a set of 𝑛 segments, report all intersection points.
• Naïve algorithm: Check all segment pairs, 𝑂(𝑛!).
• Sweep line algorithm:
• Order: scan from left to right.
• Status: segments intersecting the sweep line.

(Ordered by intersection point).
• Events: Segment start, Segment end and Segments intersection.
• Check intersection only between

adjacent segments in the status DS. Dynamic events!

𝑠"

𝑠!

𝑠#
𝑠$

𝑆𝑡𝑎𝑟𝑡(𝑆!)
𝑆𝑡𝑎𝑟𝑡(𝑆")
𝑆𝑡𝑎𝑟𝑡(𝑆#)
𝐸𝑛𝑑(𝑆!)
𝑆𝑡𝑎𝑟𝑡(𝑆$)
𝐸𝑛𝑑(𝑆$)
𝐸𝑛𝑑(𝑆")
𝐸𝑛𝑑(𝑆#)

Events Status
∅

Sweep line

Handle event: 𝑁𝑜𝑛𝑒

𝑠"

𝑠!

𝑠#
𝑠$

𝑆𝑡𝑎𝑟𝑡(𝑆")
𝑆𝑡𝑎𝑟𝑡(𝑆#)
𝐸𝑛𝑑(𝑆!)
𝑆𝑡𝑎𝑟𝑡(𝑆$)
𝐸𝑛𝑑(𝑆$)
𝐸𝑛𝑑(𝑆")
𝐸𝑛𝑑(𝑆#)

Events Status
𝑆!

Handle event: S𝑡𝑎𝑟𝑡(𝑆+)

𝑠"

𝑠!

𝑠#
𝑠$

𝑆𝑡𝑎𝑟𝑡(𝑆#)
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑆!, 𝑆")

𝐸𝑛𝑑(𝑆!)
𝑆𝑡𝑎𝑟𝑡(𝑆$)
𝐸𝑛𝑑(𝑆$)
𝐸𝑛𝑑(𝑆")
𝐸𝑛𝑑(𝑆#)

Events Status
𝑆!
𝑆"

Handle event: 𝑆𝑡𝑎𝑟𝑡(𝑆3)

𝑠"

𝑠!

𝑠#
𝑠$

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑆!, 𝑆#)
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑆!, 𝑆")

𝐸𝑛𝑑(𝑆!)
𝑆𝑡𝑎𝑟𝑡(𝑆$)
𝐸𝑛𝑑(𝑆$)
𝐸𝑛𝑑(𝑆")
𝐸𝑛𝑑(𝑆#)

Events Status
𝑆!
𝑆#
𝑆"

Handle event: 𝑆𝑡𝑎𝑟𝑡(𝑆4)

𝑠"

𝑠!

𝑠#
𝑠$

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑆!, 𝑆")
𝐸𝑛𝑑(𝑆!)
𝑆𝑡𝑎𝑟𝑡(𝑆$)
𝐸𝑛𝑑(𝑆$)
𝐸𝑛𝑑(𝑆")
𝐸𝑛𝑑(𝑆#)

Events Status
𝑆#
𝑆!
𝑆"

Handle event: 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑆+, 𝑆4)

𝑠"

𝑠!

𝑠#
𝑠$

𝐸𝑛𝑑(𝑆!)
𝑆𝑡𝑎𝑟𝑡(𝑆$)
𝐸𝑛𝑑(𝑆$)
𝐸𝑛𝑑(𝑆")
𝐸𝑛𝑑(𝑆#)

Events Status
𝑆#
𝑆"
𝑆!

Handle event: 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑆+, 𝑆3)

𝑠"

𝑠!

𝑠#
𝑠$

𝑆𝑡𝑎𝑟𝑡(𝑆$)
𝐸𝑛𝑑(𝑆$)
𝐸𝑛𝑑(𝑆")
𝐸𝑛𝑑(𝑆#)

Events Status
𝑆#
𝑆"

Handle event: 𝐸𝑛𝑑(𝑆+)

𝑠"

𝑠!

𝑠#
𝑠$

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑆", 𝑆$)
𝐸𝑛𝑑(𝑆$)
𝐸𝑛𝑑(𝑆")
𝐸𝑛𝑑(𝑆#)

Events Status
𝑆#
𝑆"
𝑆$

Handle event: 𝑆𝑡𝑎𝑟𝑡(𝑆5)

𝑠"

𝑠!

𝑠#
𝑠$

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑆#, 𝑆$)
𝐸𝑛𝑑(𝑆$)
𝐸𝑛𝑑(𝑆")
𝐸𝑛𝑑(𝑆#)

Events Status
𝑆#
𝑆$
𝑆"

Handle event: 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑆3, 𝑆5)

𝑠"

𝑠!

𝑠#
𝑠$

𝐸𝑛𝑑(𝑆$)
𝐸𝑛𝑑(𝑆")
𝐸𝑛𝑑(𝑆#)

Events Status
𝑆$
𝑆#
𝑆"

Handle event: 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑆4, 𝑆5)

𝑠"

𝑠!

𝑠#
𝑠$

𝐸𝑛𝑑(𝑆")
𝐸𝑛𝑑(𝑆#)

Events Status
𝑆#
𝑆"

Handle event: 𝐸𝑛𝑑(𝑆5)

𝑠"

𝑠!

𝑠#
𝑠$

𝐸𝑛𝑑(𝑆#)

Events Status
𝑆#

Handle event: 𝐸𝑛𝑑(𝑆3)

𝑠"

𝑠!

𝑠#
𝑠$

∅

Events Status
∅

Handle event: 𝐸𝑛𝑑(𝑆4)

Segment Intersection

• Given a set of 𝑛 segments, report all intersection points.
• Naïve algorithm: Check all segment pairs, 𝑂(𝑛!).
• Sweep line algorithm:
• Order: scan from left to right.
• Status: segments intersecting the sweep line.

(Ordered by intersection point).
• Events: Segment start, Segment end and Segments intersection.
• Check intersection only between

adjacent segments in the status DS.
• Complexity: 𝑂(𝑛 log 𝑛)

Dynamic events!

Area of union of Rectangles

Area of union of Rectangles

• What is the total area covered by a set of rectangles?

Area of union of Rectangles

• What is the total area covered by a set of rectangles?

Area of union of Rectangles

• What is the total area covered by a set of rectangles?
• Order: left to right
• Events: begin and end of a rectangle
• Status: active rectangles

Area of union of Rectangles

• Status: active rectangles
• How do we maintain the active rectangle set?
• More importantly, how do we find the total length

covered by the active rectangle?
• Naïve implementation: Recalculate the union

each time (using example #1).
Complexity: 𝑂 𝑛! .
• Better implementation: Use augmented BST (classic DS exercise).

Complexity: 𝑂(𝑛 log 𝑛) .

Minimal Distance Pair

Minimal Distance Pair

• Problem: Find the closest pair of points.

Minimal Distance Pair

• Problem: Find the closest pair of points.
• Naïve algorithm: Check all pairs, 𝑂(𝑛!)
• Sweeping idea:
• Events: All the points
• Order: left to right
• Status: minimal distance seen so far, 𝑑.

And two BSTs of all the points in a strip of width 𝑑.
one sorted by the 𝑦 coordinate,
and another sorted by the 𝑥 coordinate.

Minimal Distance Pair

𝑑

𝑑

𝑑

𝑑

Minimal Distance Pair

• Handle event:
• Compare the distance with the relevant points.
• Using the sorted by 𝑦 tree.

• Update 𝑑 if needed.
• Remove from both trees the points that now are not part of the strip.
• Using the sorted by 𝑥 tree.

